Выбери свой спорт

Изменение конформации миозина. Биохимия мышц, мышечного сокращения и расслабления

Подвижность является характерным свойством всех форм жизни. Направленное движение имеет место при расхождении хромосом в процессе клеточного деления, активном транспорте молекул, пе­ремещении рибосом в ходе белкового синтеза, сокращении и рас­слаблении мышц. Мышечное сокращение – наиболее совершенная форма биологической подвижности. В основе любого движения, в том числе и мышечного, лежат общие молекулярные механизмы.

У человека различают несколько видов мышечной ткани. По­перечно-полосатая мышечная ткань составляет мышцы скелета (скелетные мышцы, которые мы можем сокращать произвольно). Гладкая мышечная ткань входит в состав мышц внутренних орга­нов: желудочно-кишечного тракта, бронхов, мочевыводящих путей, кровеносных сосудов. Эти мышцы сокращаются непроиз­вольно, независимо от нашего сознания.

В данной лекции мы рассмотрим строение и процессы сокращения и расслабления скелетных мышц, поскольку именно они пред­ставляют наибольший интерес для биохимии спорта.

Механизм мышечного сокращения до настоящего времени раскрыт не полностью.

Достоверно известно следующее.

1. Источником энергии для мышечного сокращения являются молекулы АТФ.

2. Гидролиз АТФ катализируется при мышечном сокращении миозином, обладающим ферментативной активностью.

3. Пусковым механизмом мышечного сокращения является повышение концентрации ионов кальция в саркоплазме миоцитов, вызываемое нервным двигательным импульсом.

4. Во время мышечного сокращения между тонкими и толстыми нитями миофибрилл возникают поперечные мостики или спайки.

5. Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Гипотез объясняющих механизм мышечного сокращения много, но наиболее обоснованной является так называемая гипотеза (теория) «скользящих нитей» или «гребная гипотеза».

В покоящейся мышце тонкие и толстые нити находятся в разъединенном состоянии.

Под воздействием нервного импульса ионы кальция выходят из цистерн саркоплазматической сети и присоединяются к белку тонких нитей – тропонину. Этот белок меняет свою конфигурацию и меняет конфигурацию актина. В результате образуется поперечный мостик между актином тонких нитей и миозином толстых нитей. При этом повышается АТФазная активность миозина. Миозин расщепляет АТФ и за счет выделившейся при этом энергии миозиновая головка подобно шарниру или веслу лодки поворачивается, что приводит к скольжению мышечных нитей навстречу друг другу.

Совершив поворот, мостики между нитями разрываются. АТФазная активность миозина резко снижается, прекращается гидролиз АТФ. Однако при дальнейшем поступлении нервного импульса поперечные мостики вновь образуются, так как процесс, описанный выше, повторяется вновь.

В каждом цикле сокращения расходуется 1 молекула АТФ.

В основе мышечного сокращения лежат два процесса:

Спиральное скручивание сократительных белков;

Циклически повторяющееся образование и диссоциация ком­плекса между цепью миозина и актином.

Мышечное сокращение инициируется приходом потенциала действия на концевую пластинку двигательного нерва, где выделяется нейрогормон ацетилхолин, функцией которого яв­ляется передача импульсов. Сначала ацетилхолин взаимодействует с ацетилхолиновыми рецепторами, что приводит к распростране­нию потенциала действия вдоль сарколеммы. Все это вызывает увеличение проницаемости сарколеммы для катионов Na + , которые устремляются внутрь мышечного волокна, нейтрализуя отрицатель­ный заряд на внутренней поверхности сарколеммы. С сарколеммой связаны поперечные трубочки саркоплазматического ретикулума, по которым распространяется волна возбуждения. От трубочек волна возбуждения передается мембранам пузырьков и цистерн, которые оплетают миофибриллы на участках, где происходит взаи­модействие актиновых и миозиновых нитей. При передаче сигнала на цистерны саркоплазматического ретикулума, последние начина­ют освобождать находящийся в них Са 2+ . Высвобожденный Са 2+ связывается с Тн-С, что вызывает конформационные сдвиги, передающиеся на тропомиозин и далее на актин. Актин как бы освобождается из комплекса с компонентами тонких филаментов, в котором он находился. Далее актин взаимодействует с мио­зином, и результатом такого взаимодействия является образова­ние спайки, что делает возможным движение тонких нитей вдоль толстых.

Генерация силы (укорочение) обусловлена характером взаи­модействия между миозином и актином. На миозиновом стержне имеется подвижный шарнир, в области которого происходит по­ворот при связывании глобулярной головки миозина с опреде­ленным участком актина. Именно такие повороты, происходящие одновременно в многочисленных участках взаимодействия миозина и актина, являются причиной втягивания актиновых филаментов (тонких нитей) в Н-зону. Здесь они контактируют (при макси­мальном укорочении) или даже перекрываются друг с другом, как это показано на рисунке.




в

Рисунок. Механизм сокращения: а – состояние покоя; б – умеренное сокращение; в – максимальное сокращение

Энергию для этого процесса поставляет гидролиз АТФ. Когда АТФ присоединяется к головке молекулы миозина, где локализо­ван активный центр миозиновой АТФазы, связи между тонкой и толстой нитями не образуется. Появившийся катион кальция нейтрализует отрицательный заряд АТФ, способствуя сближению с активным центром миозиновой АТФазы. В результате происхо­дит фосфорилирование миозина, т. е. миозин заряжается энергией, которая используется для образования спайки с актином и для продвижения тонкой нити. После того как тонкая нить про­двинется на один «шаг», АДФ и фосфорная кислота отщепляются от актомиозинового комплекса. Затем к миозиновой головке присоединяется новая молекула АТФ, и весь процесс повторяет­ся со следующей головкой молекулы миозина.

Затрата АТФ необходима и для расслабления мышц. После прекращения действия двигательного импульса Са 2+ переходит в цистерны саркоплазматического ретикулума. Тн-С теряет свя­занный с ним кальций, следствием этого являются конформаци-онные сдвиги в комплексе тропонин-тропомиозин, и Тн-I снова закрывает активные центры актина, делая их неспособными взаимодействовать с миозином. Концентрация Са 2+ в области со­кратительных белков становится ниже пороговой, и мышечные волокна теряют способность образовывать актомиозин.

В этих условиях эластические силы стромы, деформированной в момент сокращения, берут верх, и мышца расслабляется. При этом тонкие нити извлекаются из пространства между толстыми нитями диска А, зона Н и диск I приобретают первоначальную длину, линии Z отдаляются друг от друга на прежнее расстояние. Мышца становится тоньше и длиннее.

Скорость гидролиза АТФ при мышечной работе огромна: до 10 мк моль на 1 г мышцы за 1 мин. Общие запасы АТФ невелики, поэтому для обеспечения нормальной работы мышц АТФ должна восстанавливаться с той же скоростью, с какой она расходуется.

Расслабление мышцы происходит после прекращения поступления длительного нервного импульса. При этом проницаемость стенки цистерн саркоплазматической сети уменьшается, и ионы кальция под действием кальциевого насоса, используя энергию АТФ, уходят в цистерны. Удаление ионов кальция в цистерны ретикулума после прекращения двигательного импульса требует значительных энерготрат. Так как удаление ионов кальция происходит в сторону более высокой концетрации, т.е. против осмотического градиента, то на удаление каждого иона кальция затрачивается две молекулы АТФ. Концентрация ионов кальция в саркоплазме быстро снижается до исходного уровня. Белки вновь приобретают конформацию характерную для состояния покоя.

Таким образом, и процесс мышечного сокращения и процесс мышечного расслабления – это активные процессы, идущие с затратами энергии в виде молекул АТФ,

В гладких мышцах нет миофибрилл, которые состоят из нескольких сотен саркомеров. Тонкие нити присоединяются к сарколемме, толстые находятся внутри волокон. Ионы кальция также играют роль в сокращении, но поступают в мышцу не из цистерн, а из внеклеточного вещества, поскольку в гладких мышцах отсутствуют цистерны с ионами калькия. Этот процесс медленный и поэтому медленно работают гладкие мышцы.

Паровая машина может превращать в полезную работу только около 10% тепловой энергии, полученной от сжигания топлива; остальное тепло рассеивается. Мышцы же способны использовать для сокращения от 20 до 40% химической энергии молекул пищевых веществ, например глюкозы. Остальная энергия переходит в тепло, но не теряется полностью, а частично используется для поддержания температуры тела. Если человек не производит сокращений мышц, то образующегося в организме тепла недостаточно для того, чтобы согревать тело в условиях холода. Тогда мышцы начинают сокращаться непроизвольно (человек «дрожит»), и образующееся при этом тепло восстанавливает и поддерживает нормальную температуру тела.

Физиологи и биохимики уже м:юго лет пытаются выяснить, каким образом протоплазма может развивать тянущее усилие, но сущность химических и физических процессов, происходящих при мышечном сокращении, все еще остается в области скорее догадок, чем установленных фактов. Химический анализ показывает, что мышца на 80% состоит из воды, сухой же остаток содержит главным образом белок, а также небольшие количества жира и гликогена и два фосфорсодержащих соединения: фос-фокреатин и аденозинтрифосфат (АТФ). Предполагают, что действительно сократимой частью мышечного волокна является белковая цепь, которая укорачивается в результате изгибания со сближением звеньев или удаления воды из «внутренних пространств» белковой молекулы. В этом участвуют два белка: миозин и актин, которые по отдельности не способны сокращаться Но если их смешать в пробирке и добавить калий и АТФ, то система приобретает способность к сокращению. Это сокращение в пробирке было одним из самых интересных открытий, когда-либо сделанных в биохимии.

Первый шаг в раскрытии тайны мышечного сокращения состоит в том, чтобы путем анализов определить, какие вещества расходуются в этом процессе. Количество гликогена, кислорода, фосфокреатина и АТФ во время сокращения уменьшается, а количество углекислоты, молочной кислоты и неорганического фосфата возрастает. Поскольку расходуется кислород и образуется углекислота, можно предполагать, что сокращение связано с каким-то окислительным процессом. Но это окисление не является необходимым: мышца может многократно сокращаться даже при полном лишении ее кислорода, если, например, выделить ее из организма и поместить в атмосферу азота. Однако такая мышца утомляется быстрее, чем мышца, сокращающаяся в атмосфере кислорода. Кроме того, наше дыхание бывает учащенным не только во время мышечного напряжения, но и в течение некоторого времени после прекращения физической работы. Это указывает на то, что окисление связано, по-видимому, не с самим мышечным сокращением, а с процессом во-становления после сокращения.

Исчезновение гликогена и образование молочной кислоты связаны между собой, так как в отсутствие кислорода количество образующейся молочной кислоты в точности эквивалентно количеству исчезающего гликогена. Поскольку расщепление гликогена до молочной кислоты не требует присутствия кислорода и сопровождается быстрым освобождением энергии, одно время думали, что эта реакция непосредственно обусловливает мышечное сокращение. При наличии кислорода мышца окисляет около 20% молочной кислоты до углекислоты и воды, а энергию, освобождающуюся при этом окислении, использует для превращения остальных 80% молочной кислоты в гликоген. Таким образом, становится понятным, почему молочная кислота не накапливается в мышце при достаточном количестве кислорода и почему мышца утомляется быстрее (утомление связано с истощением запасов гликогена и накоплением молочной кислоты), сокращаясь в отсутствие кислорода.

Примерно в 1930 г. было установлено, что мышца, отравленная йодацетатом (тормозящим химические реакции, с которыми связано расщепление гликогена до молочной кислоты), все-таки способна сокращаться, хотя может сокращаться всего 60-70 раз, тогда как мышца, лишенная кислорода, сокращается 200 раз и более. Но то обстоятельство, что она вообще может сокращаться при отсутствии гликолиза, показывает, что гликолиз не служит главным источником энергии для сокращения.

Второе изменение, которое можно обнару-жить химическими методами во время сокращения,- это отщепление неорганического фосфата от фосфокреатина и АТФ, сопровождающееся выделением энергии. Теперь полагают, что оно и служит непосредственным источником энергии для сокращения. Обменные реакции, посредством которых глюкоза и другие вещества используются для образования богатых энергией фосфатов (например, АТФ), описаны в гл. V. В мышце резервуаром макроэр-гических фосфатных связей служит фосфокре-атин; но его макроэргическая фосфатная группа может быть использована для сокращения только после того, как она будет перенесена на АДФ с образованием АТФ. После сокращения мышцы расщепление гликогена до молочной кислоты и окисление этой кислоты в реакциях цикла Кребса доставляет энергию для ресинтеза АТФ и фосфокреатина.

Таким образом, мышечное сокращение связано со следующими химическими реакциями: Миозин служит не только сократительным белком, но и ферментом: он может катализировать расщепление АТФ до АДФ и неорганического фосфата. Перенос макроэргической фосфатной группы с АТФ на креатин катализируется ферментом креатинкиназой.

По приближенной оценке, энергия одних органических фосфатов могла бы поддерживать максимальное мышечное сокращение в течение лишь нескольких секунд. За ее счет человек мог бы совершить пробег на дистанцию около 50 м. При использовании всех источников энергии, доступных в отсутствие кислорода, человек мог бы продолжать максимальные сокращения мышц в течение 30-60 сек.

Кислородная задолженность. То обстоятельство, что действительное сокращение мышцы и частичное последующее восстановление происходят без участия кислорода, имеет черезвычай-но важное значение. Нашим мышцам часто приходится производить очень большую работу за короткое время, и, хотя при физическом напряжении ритм дыхания и сердечных сокращений возрастает, доставляемого кислорода не могло бы хватить для выполнения этой работы. При очень большом напряжении, например при беге на 100 м, гликоген расщепляется до молочной кислоты быстрее, чем может окисляться молочная кислота, так что происходит накопление последней. В таких случаях говорят, что мышца имеет кислородную задолженность, которая впоследствии компенсируется, когда мы быстро вдыхаем повышенное количество кислорода, достаточное для окисления части молочной кислоты и получения таким путем энергии для ресинтеза гликогена из остальной молочной кислоты. Иными словами, при коротких периодах очень большой мышечной активности мышцы используют источники энергии, не требую-щие затраты кислорода. Но окончании мышечной работы мышцы и другие ткани покрывают кислородную задолженность, используя добавочные количества кислорода для восстановления нормальных запасов макроэргических соединений и гликогена. При беге на длинную дистанцию бегун может достигнуть равновесия и продолжать бег «на втором дыхании», при котором благодаря усиленной работе легких и сердца ткани получают достаточно кислорода, чтобы окислять вновь образующуюся молочную кислоту, и кислородная задолженность, таким образом, не возрастает.

Утомление. Если мышца вследствие многократного сокращения, истощения запасов органических фосфатов и гликогена и накопления молочной кислоты не способна больше сокращаться, то говорят, что мышца утомлена. Основная причина утомления - накопление молочной кислоты, хотя животные чувствуют усталость еще до того, как наступит истощение запасов в мышце.

Место, наиболее подверженное утомлению, можно установить экспериментально, если отпрепарировать мышцу вместе с ее нервом и повторно раздражать нерв электрическими импульсами до тех пор, пока мышца не перестанет сокращаться. Если затем непосредственно раздражать мышцу, поместив на нее электроды, то можно снова получить энергичную реакцию. При помощи прибора, позволяющего обнаружить прохождение нервных импульсов, можно показать, что идущий к мышце нерв не утомлен: он все еще способен проводить импульсы. Следовательно, утомлению подвержено место соединения нерва с мышцей, где нервные импульсы возбуждают мышцу, заставляя ее сокращаться.

Механизм мышечного сокращения. Электронные микрофотографии показывают, что мышечные фибриллы (миофибриллы) состоят из продольных нитей, называемых миофиламентами. Существует два типа таких нитей: толстые (толщиной 100 А, длиной 1,5 |а)"и тонкие (толщиной 50 А, длиной 2[х) . Путем изби-

рательного экстрагирования белков и методами гистохимического и иммунохимического окрашивания удалось показать, что толстые нити состоят из миозина, а тонкие - из актина. Толстые и тонкие нити расположены таким образом, что на поперечном разрезе каждая толстая нить окружена шестью тонкими, причем каждая из этих тонких нитей в свою очередь служит центром для шести толстых нитей.

Видимая в обычный микроскоп структура из чередующихся темных и светлых полос образована чередованием плотных дисков А и менее плотных дисков I . Каждая структурная единица состоит из одного диска А и примыкающих к нему с обеих сторон дисков I и отделена от соседней единицы тонкой плотной пластинки Z, проходящей по середине диска I. Средняя часть диска несколько светлее и называется областью Н. Как показывают электронные микрофотографии, толстые нити имеются только в диске А, а диск I содержит только тонкие нити. Последние, однако, заходят до некоторой степени в диск А - в промежутки между толстыми нитями. Таким образом, на обоих концах диска А имеются как толстые, так и тонкие нити, а средняя часть (зона Н) содержит только толстые нити. Тонкие нити кажутся гладкими, а на толстых видны мельчайшие выступы, расположенные с интервалами 60-70 А по всей их длине и доходящие до соседней тонкой нити. Эти выступы имеют вид мостиков, соединяющих оба комплекса нитей.

Во время мышечного сокращения длина диска А остается постоянной, но диск I укорачивается, а зона Н в диске А также уменьшается. Хаксли и другие авторы высказали предположение, что при сокращении толстые и тонкие нити не изменяют своей длины, а скользят друг по другу; при этом тонкие нити актина глубже внедряются в диск А, так что зона Н сокращается и диск I сужается, по мере того как концы толстых нитей миозина приближаются к пластинке Z. Физико-химический механизм этого скольжения нитей еще не ясен; возможно, что мостики между ними разрываются, а затем образуются вновь, несколько сместившись по длине нити. Для образования новых мостиков - поперечных соединений между толстыми и тонкими нитями,- возможно, используется энергия макроэргических фосфатных связей.

Когда мышца сокращается, она становится короче и толще, но общий объем ее остается прежним. Это было показано экспериментально: отпрепарированную мышцу помещали в стеклянный сосуд с узким горлышком и наполняли сосуд водой; когда после этого путем раздражения электрическими импульсами мышцу заставляли сокращаться и расслабляться, никакого изменения уровня воды в горлышке сосуда не происходило.

ГЛАВА 3. ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ МЫШЦ

3.1. Механизм мышечного сокращения

Несмотря на полифункциональность мышечной системы, основной функцией мышц является осуществление двигательного акта, то есть сокращение и расслабление. Мышечное сокращение является сложным механохимическим процессом, в ходе которого происходит превращение химической энергии гидролитического расщепления АТФ в механическую. Рассмотрим структурную основу процесса сокращения поперечно-полосатых мышц позвоночных, поскольку этот процесс изучен наиболее полно. Как отмечалось, сократительная система поперечно-по­лосатой мышцы состоит из перекрывающихся белковых нитей, которые скользят относительно друг друга (см. рис. 9, А).

Согласно модели, предложенной Э.Хаксли и Р.Нидергерке, а также X.Хаксли и Дж.Хенсон, при сокращении миофибрилл одна система нитей проникает в другую, то есть нити начинают как бы скользить друг по другу, что и является причиной мышечного сокращения .

Сокращение происходит за счет энергии, освобождающейся при гид­ролизе АТФ. В поперечно-полосатой мышце сокращение зависит от кон­центрации ионов Са 2+ , которая, в свою очередь, регулируется саркоплаз­матическим ретикулумом – специализированной системой мембран, накапливающей Са 2+ в состоянии покоя и высвобожающей его при воздействии на мышечное волокно нервного импульса (см. рис. 11, А, Б) .

1) миозиновая «головка» может гидролизовать АТФ до АДФ и Н 3 РО 4 (P i), но не обеспечивает освобождения продуктов гидролиза. Поэтому данный процесс носит скорее стехиометрический, чем каталитический, характер (см. рис. 10, а);

3) это взаимодействие обеспечивает высвобождение АДФ и Н 3 РО 4 из актин-миозинового комплекса. Актомиозиновая связь имеет наимень­шую энергию при величине угла 45°, поэтому изменяется угол миозина с осью фибриллы с 90° на 45° (примерно) и происходит продвижение актина (на 10–15 нм) в направлении центра саркомера (см. рис. 10, в) («гребок» согласно модели весельной лодки на рис. 9 Б);

Рис. 9. Организация скелетных мышц позвоночных

и механизм сокращения мышечных волокон

4) новая молекула АТФ связывается с комплексом миозин-F-ак­тин (см. рис. 10, г);

5) комплекс миозин – АТФ обладает низким сродством к актину, и поэтому происходит отделение миозиновой (АТФ) «головки» от F-актина. Последняя стадия и есть собственно расслабление, которое отчетливо за­висит от связывания АТФ с актин-миозиновым комплексом (см. рис. 10, д). Затем цикл возобновляется .

Рис. 10. Биохимический цикл мышечного сокращения

Цикл повторяется до тех пор, пока имеется АТФ. Каждый «гребок» 500 миозиновых «головок» толстого филамента вызывает смещение на 10 нм. Во время сильных сокращений частота «гребков» составляет примерно 5 раз в секунду. При каждом цикле гидролиза АТФ «головки» миозина взаимодействуют с новыми молекулами актина, за счет чего и происходит взаимное скольжение миозиновых и актиновых филаментов, то есть сокращение мышечного волокна .

3.2. Регуляция сокращения и расслабления мышц

Сокращение любых мышц происходит по общему механизму, опи­санному ранее. Мышечные волокна разных органов могут обладать различными молекулярными механизмами регуляции сокращения и расслаб­ления, однако всегда ключевая регуляторная роль принадлежит ионам Са 2+ . Установлено, что миофибриллы обладают способностью взаимодействовать с АТФ и сокращаться в его присутствии лишь при наличии в среде определенных концентраций ионов кальция. Наибольшая сократительная активность наблюдается при концентрации ионов Са 2+ около 10 –6 –10 –5 М. При понижении концентрации до 10 –7 М или ниже мышечные волокна теряют способность к укорочению и развитию напряжения в присутствии АТФ .

По современным представлениям, в покоящейся мышце (в миофи­бриллах и межфибриллярном пространстве) концентрация ионов Са 2+ поддерживается ниже пороговой величины в результате связывания их структурами (трубочками и пузырьками) саркоплазматической сети и так называемой Т-системой при участии особого Са 2+ -связывающего белка, получившего название кальсеквестрина, входящего в состав этих структур .

Связывание ионов Са 2+ разветвленной сетью трубочек и цистерн саркоплазматической сети не является простой адсорбцией. Это активный физиологический процесс, который осуществляется за счет энергии, освобождающейся при расщеплении АТФ Са 2+ -зависимой АТФазой саркоплазматической сети. При этом наблюдается весьма своеобразная картина: скорость выкачивания ионов Са 2+ из межфибриллярного прос­транства стимулируется этими же ионами. В целом такой механизм получил название «кальциевая помпа» по аналогии с хорошо известным в физиологии натриевым насосом (см. рис. 11, Б).

Возможность пребывания живой мышцы в расслабленном состоянии при наличии в ней достаточно высокой концентрации АТФ объясняется снижением в результате действия кальциевой помпы концентрации ионов Са 2+ в среде, окружающей миофибриллы, ниже того предела, при котором еще возможны проявление АТФазной активности и сократимость актомиозиновых структур волокна. Быстрое сокращение мышечного волокна при его раздражении от нерва (или электрическим током) является результатом внезапного изменения проницаемости мембран и как следствие выхода из цистерн и трубочек саркоплазматической сети и Т-системы некоторого количества ионов Са 2+ в саркоплазму (см. рис. 11, А, Б) .

Как отмечалось, «чувствительность» актомиозиновой системы к ионам Са 2+ (то есть потеря актомиозином способности расщеплять АТФ и сокращаться в присутствии АТФ при снижении концентрации ионов Са 2+ до 10 –7 М) обусловлена присутствием в контрактильной системе (на нитях F-актина) белка тропонина, связанного с тропомиозином. В тропонин-тропомиозиновом комплексе ионы Са 2+ связываются именно с тропонином (С-субъединица тропонина по свойствам близка кальмодули-

Рис. 11. Регуляция сокращения мышечных волокон

ну). Связывание ионов Са 2+ вызывает конформационные изменения в молекуле тропонина, которые, по-видимому, приводят к сдвигу всего тропонин-тропомиозинового стержня и деблокировке активных центров актина, способных взаимодействовать с миозином с образованием сократительного комплекса и активной Mg 2+ -АТФазы. Это инициирует цикл мышечного сокращения (см. рис. 11 В) .

В продвижении актиновых нитей вдоль миозиновых, по данным Э.Хаксли, важную роль играют временно замыкающиеся между нитями поперечные мостики, которые являются «головками» миозиновых молекул. Итак, чем большее число мостиков прикреплено в данный момент к актиновым нитям, тем больше сила мышечного сокращения .

Наконец, если возбуждение прекращается, содержание ионов Са 2+ в саркоплазме снижается (кальциевая помпа), как следствие, комплекс Са 2+ с тропонином С диссоциирует, тропонин восстанавливает исходную конформацию, место связывания миозина на актине блокируется, то есть «головки» миозиновых нитей перестают прикрепляться к актиновым нитям. В присутствии АТФ мышца расслабляется и ее длина достигает исходной. Если прекращается поступление АТФ (аноксия, отравление дыхательными ядами или смерть), то мышца переходит в состояние окоченения. Почти все поперечные мостики толстых (миозиновых) нитей присоединены при этом к тонким актиновым нитям, следствием чего и является полная неподвижность мышцы .

ГЛАВА 4. БИОЭНЕРГЕТИКА МЫШЕЧНОЙ ДЕЯТЕЛЬНОСТИ

4.1. Общая характеристика систем и механизмов

энергообеспечения мышечной деятельности

Как показано в главе 3, непосредственным источником энергии при мышечной деятельности является АТФ. Освобождение энергии про­исходит при ферментативном гидролизе молекулы АТФ до АДФ и ортофосфата:

Ca 2+ -АТФаза

АТФ + Н 2 О АДФ + Н 3 РО 4 .

ΔQ = 7,3 ккал, или 30 кДж

Химическая энергия в процессе мышечного сокращения преобразу­ется в механическую работу мышц, а при расслаблении обеспечивает актив­ный транспорт Са 2+ в саркоплазматический ретикулум. Большое количес­тво АТФ расходуется в скелетных мышцах на работу Nа + -К + -АТФазы, ко­торая поддерживает определенную концентрацию ионов Na + и К + в мыш­це, создающих электрохимический потенциал на сарколемме .

Таким образом, для обеспечения мышечной клеткой своего сократительного аппарата достаточным количеством энергии в форме АТФ не­обходим непрерывный ресинтез этого соединения.

Содержание АТФ в мышцах незначительное и составляет около 5 ммоль ∙ кг -1 сырой массы ткани (0,25–0,40 %). Оно поддерживается на относительно постоянном уровне, так как повышение концентрации АТФ в мышцах вызывает угнетение АТФазы миозина, что препятствует образованию спаек между актиновыми и миозиновыми нитями в миофибриллах и сокращению мышц, а снижение ее ниже 2 ммоль ∙ кг -1 сырой массы ткани приводит к нарушению работы Са 2+ -насоса в ретикулуме и процесса расслабления мышц. Запасы АТФ в мышечных волокнах могут обеспечить выполнение интенсивной работы только в течение очень короткого времени – 0,5–1,5 с, или 3–4 одиночных сокращения максимальной силы. Дальнейшая мышечная работа осуществляется благодаря быстрому восстановлению (ресинтезу) АТФ из продуктов ее распада и такого количества энергии, которое выделилось при распаде:

АДФ + Н 3 РО 4 + ΔQ → АТФ .

Реакция присоединения фосфата называется фосфорилированием, а реакция переноса его с одного вещества на другое – перефосфорилированием .

Рис. 12. Энергетический обмен в мышечной ткани

Энергетическими источниками для ресинтеза АТФ в скелетных мышцах и других тканях выступают богатые энергией фосфатсодержащие вещества, которые присутствуют в тканях (креатинфосфат, АДФ) или образуются в процессе катаболизма гликогена, жирных кислот и других энергетических субстратов (например, метаболиты дифосфоглицериновая и фосфопировиноградная кислоты), а также энергия протонного (Н +) градиента на мембране митохондрий, образующаяся в результате аэробного окисления различных веществ .

В зависимости от того, с помощью какого биохимического процесса поставляется энергия для образования молекул АТФ, выделяют четыре механизма, или пути ресинтеза АТФ в тканях (см. рис. 12). Каждый механизм имеет свои метаболические и биоэнергетические особенности. В энергообеспечении мышечной работы используются разные ме­ханизмы в зависимости от интенсивности и длительности выполняемого упражнения .

Ресинтез АТФ может осуществляться в реакциях, протекающих без участия кислорода (анаэробные механизмы) или с участием вдыхаемого кислорода (аэробный механизм) .

В обычных условиях ресинтез АТФ в тканях происходит преимущественно аэробно, а при напряженной мышечной деятельности, ког­да доставка кислорода к мышцам затруднена, в тканях усиливаются и анаэробные механизмы ресинтеза АТФ. В скелетных мышцах человека выявлены три вида анаэробных и один аэробный путь ресинтеза АТФ (см. рис. 13).

К анаэробным механизмам относятся:

1) креатинфосфокиназный (фосфогенный или алактатный) механизм, обеспечивающий ресинтез АТФ за счет перефосфорилирования между креатинфосфатом и АДФ;

2) гликолитический (лактатный) механизм, обеспечивающий ресин­тез АТФ в процессе ферментативного анаэробного расщепления гликогена мышц или глюкозы крови, заканчивающегося образованием молоч­ной кислоты, поэтому и называется лактатным;

3) миокиназный механизм, осуществляющий ресинтез АТФ за счет реакции перефосфорилирования между двумя молекулами АДФ с участием фермента миокиназы (аденилаткиназы).

Рис. 13. Механизмы ресинтеза АТФ в мышцах

(в рамках представлены энергетические субстраты

и выделены названия механизмов)

Аэробный механизм ресинтеза АТФ включает в основном реакции окислительного фосфорилирования, протекаемые в митохондриях. Энер­гетическими субстратами аэробного окисления служат глюкоза, жирные кислоты, частично аминокислоты, а также промежуточные метаболиты гликолиза – молочная кислота, окисления жирных кислот – кетоновые тела .

Каждый механизм имеет разные энергетические возможности, которые характеризуются по следующим критериям оценки механизмов энергообразования: максимальная мощность, скорость развертывания, ме­таболическая емкость и эффективность. Максимальная мощность – это наибольшая скорость образования АТФ в данном метаболическом процессе. Она лимитирует предельную интенсивность работы, выполняемой за счет данного механизма. Скорость развертывания оценивается вре­менем достижения максимальной мощности данного пути ресинтеза АТФ от начала работы. Метаболическая емкость отображает общее количес­тво АТФ, которое может быть получено в данном механизме ресинтеза за счет величины запасов энергетических субстратов; емкость лимитирует объем выполняемой работы. Метаболическая эффективность – это та часть энергии, которая накапливается в макроэргических связях АТФ; она определяет экономичность выполняемой работы и оценивается общим значением коэффициента полезного действия (КПД), представляю­щего отношение всей полезно затраченной энергии к ее общему количеству, выделенному в данном метаболическом процессе .

Общий КПД при преобразовании энергии метаболических процессов в механическую работу (E м) зависит от двух показателей: а) эффективности преобразования выделяемой в ходе метаболических превраще­ний энергии в энергию ресинтезируемых макроэнергических фосфорных соединений (ATФ), то есть эффективности фосфорилирования (E ф); б) эффективности преобразования АТФ в механическую работу, то есть эффективности хемомеханического сопряжения (Е е):

E м = (E ф / Е е) × 100.

Эффективность хемомеханического сопряжения в процентах аэроб­ного и анаэробного метаболизма примерно одинакова и составляет 50 %, в то время как эффективность фосфорилирования наивысшая в алактатном анаэробном процессе – около 80 % и наименьшая – в анаэробном гликолизе – в среднем 44 %, в аэробном процессе она составляет примерно 60 % .

Сравнительная характеристика креатинфосфокиназного, гликолитического и аэробного механизмов энергообеспечения мышечной деятельности по оценочным критериям представлена в таблице 3.

Из таблицы 3 видно, что креатинфосфокиназный и гликолитический механизмы имеют большую максимальную мощность и эффективность образования АТФ, но короткое время удержания максимальной мощности и небольшую емкость из-за малых запасов энергетических субстратов. Аэробный механизм имеет почти в три раза меньшую максимальную мощность по сравнению с креатинфосфокиназным, но поддерживает ее в течение длительного времени, а также практически неисчерпаемую емкость благодаря большим запасам энергетических субстратов в виде углеводов, жиров и частично белков. Так, за счет запасов жиров организм может непрерывно работать в течение 7–10 дней, в то время как запасы энергетических субстратов анаэробных механизмов энергообразования менее значительные .

Учебное Документ

... УДК (470)(082) ББК ... издательская благотворительность М. П. Беляева. Отдельным сторонам издательской ... печатаются ... совета , на котором было принято решение продолжить деятельность в эмиграции. Не предаваясь иллюзиям по ... качестве учебного пособия . Его...

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Г. БЕЛИНСКОГО

Принято на заседании Ученого совета Естественно-географического факультета протокол № ___от «___» _________2006 г.

Декан факультета ________________

Л.В. Кривошеева УТВЕРЖДАЮ

Проректор по учебной работе

______________________________

М.А. Пятин

УЧЕБНАЯ РАБОЧАЯ ПРОГРАММА

по дисциплине «Биохимия мышечного сокращения»

для специальности

020208 (012300) – «Биохимия»

Факультет естественно-географический

Кафедра биохимии

Пенза, 2006 год

ТРЕБОВАНИЯ ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО СТАНДАРТА ПО ДИСЦИПЛИНЕ

Индекс

КВАЛИФИКАЦИОННЫЕ ТРЕБОВАНИЯ

Подготовка специалиста-биохимика проводится на биологических факультетах или отделениях, на кафедрах биохимии. Реализация основной образовательной программы специалиста биохимика должна обеспечиваться преподавателями, имеющими базовое образование и/или опыт работы и публикации по профилю преподаваемых дисциплин, систематически ведущих научную и научно-методическую работу, подтвержденную публикациями. Доля преподавателей с учеными степенями и званиями должна быть не менее 67%. Преподаватели специальных дисциплин, как правило, должны иметь ученую степень и опыт деятельности в соответствующей профессиональной сфере.

ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Курс «Биохимия мышечного сокращения» должен ознакомить студентов с основами молекулярного строения и функционирования мышц в норме и при патологии, а также особенностями биологических процессов, которые возникают в них в ходе занятий физическими упражнениями и спортом.

Биохимия мышечного сокращения является разделом биохимии и находится на стыке теоретической и экспериментальной физики, молекулярной биологии, физиологии человека, медицинских дисциплин.

Содержание курса составляют темы об особенностях строения и механизма действия белков мышечной ткани, энергетическом обеспечении мышечной деятельности и протекании биохимических процессов в норме, а также при физической нагрузке и при патологии. Изучение этого курса позволяет будущим специалистам понять сущность и значение процессов, протекающих в мышечных тканях организма на молекулярном уровне.

Цели курса: соединить фундаментальные сведения по биохимии человека и возможность использования этих знаний в практике физического воспитания.

Задачи курса:

Представить современные сведения об особенностях обмена веществ при мышечной деятельности;

Раскрыть биохимические основы:

    изменений в организме при физической нагрузке

    процессов утомления

    процессов восстановления

    адаптации при тренировках

    методов тренировки

    эффективности тренировочного процесса

    спортивной работоспособности

    развития двигательных качеств и выносливости спортсменов

    питания

    контроля за состоянием спортсменов

Программа составлена в соответствии с Государственным образовательным стандартом Высшего профессионального образования для студентов, обучающихся по специальности 020208 (012300) «Биохимия».

По учебному плану этой специальности на курс «Биохимия мышечного сокращения» отводится 68 часов, из них 34 часа на аудиторную и 34 часа на самостоятельную работу. Из 34 часов аудиторной работы 34 часа – лекции. По курсу предусмотрен зачет.

РАСПРЕДЕЛЕНИЕ УЧЕБНОГО ВРЕМЕНИ ПО СЕМЕСТРАМ И ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ

семестра

СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

    Введение

Предмет биохимии мышечного сокращения. Задачи и содержание курса. Краткий исторический обзор. Значение биохимии мышечного сокращения как учебного предмета для подготовки биохимиков. Положение биохимии мышечного сокращения в общей системе естественных наук.

    Опорно-двигательная система цитоплазмы

Сократительные белки цитоскелета.

Типы волокнистых структур: микрофиламенты, микротрубочки, промежуточные филаменты. Их строение и регуляция функций.

Строение и движение ресничек. Двигательный аппарат бактерий.

    Коллаген

Типы коллагена. Особенности строения коллагеновых молекул. Синтез коллагена. Наследственные болезни, обусловленные аномалиями коллагена.

    Строение и химический состав мышечной ткани

Классификация мышечной ткани.

Морфологическая организация поперечно-полосатой мышцы. Структура мышечного волокна. Химический состав поперечно-полосатой мышцы. Мышечные белки, входящие в состав саркоплазмы: миоглобин, парвальбумины. Сократительные белки: миозин, актин, актомиозин, тропомиозин, тропонин Т, тропонин I , тропонин С, - и -актин. Небелковые азотистые экстрактивные вещества. Безазотистые вещества.

Особенности химического состава сердечной мышцы и гладкой мускулатуры.

Изменение химического состава мышечной ткани в онтогенезе.

5. Функциональная биохимия мышц

Биохимический цикл мышечного сокращения. Регуляция сокращения и расслабления мышц: актиновая регуляция поперечно-полосатых мышц, миозиновая регуляция гладких мышц. Роль ионов кальция и модуляторных белков.

6. Биоэнергетические процессы при мышечной деятельности

Анаэробный (миокиназный, креатинфосфокиназный и гликолитический) и аэробный (окислительное фосфорилирование) пути ресинтеза АТФ при мышечной деятельности. Соотношение различных путей ресинтеза АТФ при мышечной деятельности разной мощности и интенсивности. Последовательность включения разных энергетических источников.

7. Биохимия физических упражнений и спорта

Биохимические особенности транспорта кислорода и его депонирование в мышцах. Кислородное потребление при работе, кислородный дефицит и кислородный долг. Энергетическая стоимость и кислородный запрос упражнений.

Биохимические изменения, происходящие в мышечной системе, внутренних органах, крови и ЦНС под влиянием тренировки. Биохимические изменения при стандартной и максимальной работе, при утомлении, в период отдыха. Последовательность биохимических изменений при тренировке и растренировке. Биохимические изменения при перетренировке.

Биохимическое обоснование классификации спортивных упражнений по относительной мощности. Биохимические изменения в организме при выполнении циклических (бег, плавание, велосипедный, лыжный и конькобежный спорт) и ациклических (тяжелая атлетика, бокс, гимнастика, борьба) упражнений.

8. Биохимические изменения в мышцах при патологии

Примерное распределение часов по темам

п/п

ПРИМЕРНЫЕ ТЕМЫ КОНТРОЛЬНЫХ РАБОТ

1. Типы мышечной ткани. Строение мышц. Биохимия мышечного сокращения. Обмен веществ при мышечной деятельности – Тест.

Литература

Основная:

Дополнительная:

2. Биохимические изменения в организме при выполнении упражнений различной мощности и продолжительности. Биохимические факторы утомления и восстановления. Закономерности биохимической адаптации при спортивной тренировке. Биохимические основы выносливости, скоростно-силовых качеств, спортивной работоспособности. – Решение задач.

Литература

Основная:

1. Альбертс Б., Брей Д., Льюис Дж., Рафф М., Робертс К., Уотсон Дж. Молекулярная биология клетки. В 3-х томах. 2-е изд. – М.: Мир, 1994

2. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. – М.: Медицина, 2002

3. Мари Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека: Пер. с англ. – М.: Мир, 1993

4. Биохимия / Под ред. Меньшикова В.В., Волкова Н.И. – М.: Физкультура и спорт, 1986

5. Волков Н.И. Биохимия мышечной деятельности. – М.: Олимпийский спорт, 2001.

6. Яковлев Н.Н. Биохимия спорта. – М.: Физкультура и спорт, 1974

7. Яковлев Н.Н. Химия движения. – Л.: Наука, 1983

Дополнительная:

1. Физиология человека / Косицкий Г.И. – М.: Медицина, 1985, 544с.

2. Биохимия и молекулярная биология / Эллиот В., Эллиот Д.; Пер. с англ.: О.В. Добрыниной и др.; Под ред. А.И. Арчакова – М.: МАИС «Наука/Интерпериодика», 2002, 446с.

3. Ленинджер А. Биохимия. Т. 1 – 3. М.: Мир, 1985

ФОРМА ИТОГОВОГО КОНТРОЛЯ ЗНАНИЙ – ЗАЧЕТ

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ К ЗАЧЕТУ

    Особенности обмена веществ при мышечной деятельности.

    Типы мышц и мышечных волокон. Структурная организация мышечных волокон. Химический состав мышечной ткани.

    Структурные и биохимические изменения в мышцах при сокращении и расслаблении. Молекулярный механизм мышечного сокращения.

    Регуляция сокращения и расслабления мышц: актиновая регуляция поперечно-полосатых мышц, миозиновая регуляция гладких мышц. Роль ионов кальция и модуляторных белков.

    Общая характеристика механизмов энергообразования. Креатинфосфокиназный, гликолитический, миокиназный, аэробный механизмы ресинтеза АТФ. Соотношение различных путей ресинтеза АТФ при мышечной деятельности разной мощности и интенсивности. Последовательность включения разных энергетических источников.

    Общая направленность изменения биохимических процессов при мышечной деятельности. Транспорт кислорода к работающим мыщцам и его потребление при мышечной деятельности.

    Биохимические изменения в отдельных органах и тканях при мышечной работе. Классификация физических упражнений по характеру биохимических изменений при мышечной работе.

    Биохимические факторы утомления.

    Биохимические основы процессов восстановления.

    Факторы, лимитирующие физическую работоспособность человека. Показатели аэробной и анаэробной работоспособности спортсмена.

    Влияние тренировки на работоспособность спортсменов. Возраст и спортивная работоспособность.

    Биохимическая характеристика скоростно-силовых качеств. Биохимические основы методов скоростно-силовой подготовки спортсменов.

    Биохимические факторы выносливости. Методы тренировки, способствующие развитию выносливости.

    Физические нагрузки, адаптация и тренировочный эффект. закономерности развития биохимической адаптации и принципы тренировки. Специфичность адаптационных изменений в организме при тренировке.

    Обратимость адаптационных изменений при тренировке. Последовательность адаптационных изменений при тренировке.

    Взаимодействие тренировочных эффектов в процессе тренировки. Цикличность развития адаптации в процессе тренировки.

    Принципы рационального питания спортсменов. Энергопотребление организма и его зависимость от выполняемой работы. Сбалансированность питательных веществ в рационе спортсменов.

    Роль отдельных химических компонентов пищи в обеспечении мышечногй деятельности. Пищевые добавки и регулирование массы тела.

    Задачи, виды и организация биохимического контроля. Объекты исследования и основные биохимические показатели. Основные биохимические показатели состава крови и мочи, их изменение при мышечной деятельности. Биохимический контроль развития систем энергообеспечения организма при мышечной деятельности.

    Биохимический контроль за уровнем тренированности, утомления и восстановления организма спортсмена. Контроль за применением допинга в спорте.

II . Подготовка докладов: Биохимические основы различных видов спорта.

План:

    подключение энергетических систем и их адаптация при тренировке

    мощность и емкость аэробного и анаэробного процессов

    биохимические изменения в организме

    процессы утомления и восстановления

    специфичность адаптационных изменений при тренировках

    биохимия питания

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

    Альбертс Б., Брей Д., Льюис Дж., Рафф М., Робертс К., Уотсон Дж. Молекулярная биология клетки. В 3-х томах. 2-е изд. – М.: Мир, 1994

    Березов Т.Т., Коровкин Б.Ф. Биологическая химия. – М.: Медицина, 2002

    Ленинджер А. Биохимия. Т. 1 – 3. М.: Мир, 1985

    Мари Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека: Пер. с англ. – М.: Мир, 1993

    Биохимия и молекулярная биология / Эллиот В., Эллиот Д.; Пер. с англ.: О.В. Добрыниной и др.; Под ред. А.И. Арчакова – М.: МАИС «Наука/Интерпериодика», 2002, 446с.

    Биохимия / Под ред. Меньшикова В.В., Волкова Н.И. – М.: Физкультура и спорт, 1986

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

    Волков Н.И. Биохимия мышечной деятельности. – М.: Олимпийский спорт, 2001.

    Физиология человека / Косицкий Г.И. – М.: Медицина, 1985, 544с.

    Яковлев Н.Н. Биохимия спорта. – М.: Физкультура и спорт, 1974

    Яковлев Н.Н. Химия движения. – Л.: Наука, 1983

Учебная рабочая программа по дисциплине «Биохимия мышечного сокращения» для специальности 0202028 (012300) – «Биохимия» обсуждена и одобрена на заседании кафедры биохимии

Протокол № _____ от «____»_____________ 2006 года

Зав. кафедрой биохимии

д.б.н., профессор _________________________________ М.Т. Генгин

(подпись)

Одобрено методическим советом Естественно-географического факультета

Протокол №____________ от «_____ » ___________ 2006 года

Председатель Методического совета

Естественно-географического факультета,

к.т.н., доцент ___________________________ О.В. Зорькина

(подпись)

Составитель:

Канд. биол. наук, доцент Петрушова О.П. _________________________

(подпись)

У животных и человека имеются два основных типа мышц:

  • поперечно-полосатые (прикрепляются к костям, т. е. к скелету, и поэтому еще называются скелетными, выделяют также сердечную мышцу, имеющую свои особенности);
  • гладкие (мускулатура стенок полых органов и кожи).

Строение мышечных клеток

Поперечно-полосатая мышца состоит из многочисленных удлиненных мышечных клеток. Двигательные нервы входят в различных точках в мышечное волокно и передают ему электрический импульс, вызывающий сокращение. Мышечное волокно обычно рассматривают как многоядерную клетку гигантских размеров, покрытую эластичной оболочкой - сарколеммой. Диаметр функционально зрелого поперечнополосатого мышечного волокна обычно составляет от 10 до 100 мкм, а длина волокна часто соответствует длине мышцы.

В саркоплазме мышечных волокон обнаруживается ряд структур: митохондрии, микросомы, рибосомы, трубочки и цистерны саркоплазматической сети, различные вакуоли, глыбки гликогена и включения липидов, играющие роль запасных энергетических материалов, и т. д.

В каждом мышечном волокне в полужидкой саркоплазме по длине волокна расположено, нередко в форме пучков, множество нитевидных образований - миофибрилл (толщина их обычно менее 1 мкм), обладающих, как и все волокно в целом, поперечной исчерченностью. Поперечная исчерченность волокна, зависящая от оптической неоднородности белковых веществ, локализованных во всех миофибриллах на одном уровне, легко выявляется при исследовании волокон скелетных мышц в поляризационном или фазово-контрастном микроскопе (рис. 2).

Повторяющимся элементом поперечно-полосатой миофибриллы является саркомер - участок миофибриллы, границами которого служат узкие 2-линии. Каждая миофибрилла состоит из нескольких сот саркомеров. Средняя длина саркомера 2,5-3,0 мкм. В середине саркомера находится зона протяженностью 1,5-1,6 мкм, темная в фазово-контрастном микроскопе. В поляризованном свете она дает сильное двойное лучепреломление. Эту зону принято называть диском А (анизотропный диск). В центре диска А расположена линия М, которую можно наблюдать только в электронном микроскопе. Среднюю часть диска А занимает зона Н более слабого двойного лучепреломления. Наконец, существуют изотропные диски, или диски I, с очень слабым двойным лучепреломлением. В фазовоконтрастном микроскопе они кажутся более светлыми, чем диски А. Длина дисков I около 1 мкм. Каждый из них разделен на две равные половины Z-мембраной, или Z-линией. Согласно современным представлениям, в дисках А расположены толстые нити, состоящие главным образом из белка миозина, и тонкие нити, состоящие, как правило, из второго компонента актомиозиновой системы- белка актина. Тонкие (актиновые) нити начинаются в пределах каждого саркомера у Z-линии, тянутся через диск I, проникают в диск А и прерываются в области зоны Н.

Рис. 2. Фотография микропрепарата поперечно-полосатой мышечной ткани

Рис. 3. Схема строения саркомера

При исследовании тонких срезов мышц под электронным микроскопом было обнаружено, что белковые нити расположены строго упорядоченно. Толстые нити диаметром 12-16 нм и длиной примерно 1,5 мкм уложены в форме шестиугольника диаметром 40-50 нм и проходят через весь диск А. Между этими толстыми нитями располагаются тонкие нити диаметром 8 нм, простираясь от 2-линии на расстояние около 1 мкм (рис. 3). Изучение мышцы в состоянии сокращения показало, что диски I в ней почти исчезают, а область перекрывания толстых и тонких нитей увеличивается (в скелетной мышце в состоянии сокращения саркомер укорачивается до 1,7-1,8 мкм).

Согласно модели, предложенной Э. Хаксли и Р. Нидергерке, а также X. Хаксли и Дж. Хенсоном, при сокращении миофибрилл одна система нитей проникает в другую, т. е. нити начинают как бы скользить друг по другу, что и является причиной мышечного сокращения.

Загрузка...